Nir Shaviv is a full professor at the Racah Institute of Physics in the Hebrew University of Jerusalem.
Climate models either leave out entirely or do not include realistically the climate impact of solar activity and cosmic rays. They fail completely to model ice ages and other phenomenon characterized by high levels of CO2 and low or normal global temperatures.
Shaviv's article shows that Climate Alarmists, including scientists pushing the alarm, are not credible.
----------------------------------------
1. Ice Age Epochs and Milky Way Spiral Arm Passages:
Different empirical evidence convincingly support the existence of a link between solar activity and the terrestrial climate. In particular, various climate indices appear to correlate with solar activity proxies on time scales ranging from years to many millennia. For example, small but statistically significant temperature variations (of about 0.1°C) exist in the global temperature, following the 11 year solar cycle. On longer time scales, the climate system has enough time to adjust, and larger temperature variations arise from the secular variations in the solar activity.
One mechanism which can give rise to a notable solar/climate link was suggested by the late Edward Ney of the U. of Minnesota, in 1959. He suggested that any climatic sensitivity to the density of tropospheric ions would immediately link solar activity to climate. This is because the solar wind modulates the flux of high-energy particles coming from outside the solar system. These particles, the cosmic rays, are the dominant source of ionization in the troposphere. Thus, a more active sun which accelerates a stronger solar wind, would imply that as cosmic rays diffuse from the outskirts of the solar system to its center, they lose more energy. Consequently, a lower tropospheric ionization rate results. Over the 11-yr solar cycle and the long term variations in solar activity, these variations amount to typically a 10% change in this ionization rate. Moreover, it now appears that there is a climatic variable sensitive to the amount of tropospheric ionization - clouds. Thus, the emerging picture is as described in figure 1.
The main result of this research, is that the variations of the flux, as predicted from the galactic model and as observed from the Iron meteorites is in sync with the occurrence of ice-age epochs on Earth. The agreement is both in period and in phase: (1) The observed period of the occurrence of ice-age epochs on Earth is 145 ± 7 Myr (compared with 143 ± 10 Myrs for the Cosmic ray flux variations), (2) The mid point of the ice-age epochs is predicted to lag by 31 ± 8 Myr and observed to lag by 33 ± 20 Myr. This can be seen in the first figure.
A second agreement is in the long term activity: On one hand there were no ice-age epochs observed on Earth between 1 and 2 billion years ago. On the other hand, it appears that the star formation rate in the Milky way was about 1/2 of its average between 1 billion and 2 billion year ago, while it was higher in the past 1 billion years, and between 2 to 3 billion years ago.
Another point worth mentioning is that, unlike some articles which misquote me (or copy from a misquoting article), I don't think we wont have an ice age coming in the coming few tens of millions of years. If this galactic-climate picture is correct (and you should judge yourself from the evidence, in particular by the paper in New Astronomy), it implies that we are at the end of a several 10 million year long "icehouse" epoch during which we have ice-ages come and go, and gradually over the next few millions of years, the severity of ice-ages should diminish, until they will disappear altogether. I wouldn't buy real estate in Northern Canada just yet.
By comparing cosmic ray flux variations to a quantitative record of climate history, more conclusions can be drawn. This was done together with Jan Veizer, whose group reconstructed the temperature on Earth over the past 550 million years by looking at 18O to 16O isotope ratios in fossils formed in tropical oceans. The following astonishing results were found once the reconstructed temperature was compared with the reconstructed cosmic ray flux variations:
1 Cosmic Ray Flux variations explain more than 2/3's of the variance in the reconstructed temperature. Namely, Cosmic Ray Flux variability is the most dominant climate driver over geological time scales.
2 An upper limit can be placed on the relative role of CO2 as a climate driver.
3 Using point #2, an upper limit can be place on the global "radiative forcing" sensitivity - the ratio between changes to the radiation budget and ensuing temperature increase. The upper limit obtained is lower than often stated value. This implies that a large fraction of the global warming witnessed over the past century is not due to CO2. Instead, it should be attributable to the increased solar activity which diminished the cosmic ray flux reaching Earth (It has nothing to do with spiral arms as some people misquote me!).
Note however:
* Some of the global warming is still because of us humans (probably about 1/3 to 1/2 of the warming).
* There are many good reasons why we should strive towards using less fossil fuels and more clean alternatives, even though global warming is not the main reason.
* A more recent analysis, which includes: (a) Corrections to the temperature reconstruction due to ocean pH variations, and (b) more empirical comparisons between actual temperature variations and changes in the radiative budget further constrain the global sensitivity to about 1-1.5°C change for CO2 doubling (as compared with the 1.5-4.5°C with the "commonly accepted range" of the IPCC, obtained from global circulation models).
3. Cosmic Rays and the Faint Sun Paradox:
The sun, like other stars of its type, is slowly increasing its energy output as it converts its Hydrogen into Helium. 4.5 Billion years ago, the sun was 30% fainter than it is today and Earth should have been frozen solid, but it wasn't. This problem was coined as the "Faint Sun Paradox" by Carl Sagan.
If the Cosmic Ray Flux climate link is real, it significantly extenuates this discrepancy. This is because the young sun, which was rotating much faster, necessarily had a much stronger solar wind. This implies that less cosmic rays from the galaxy could have reached Earth because cosmic rays lose energy in the solar wind as they propagate from the interstellar medium to Earth. Since less cosmic rays implies a higher temperature, this effect will tend to compensate for the fainter sun.
Plugging in the numbers reveals that about 2/3's of the temperature increase required to warm the young Earth to above today's temperature, can be explained with this effect. The remaining 1/3 or so, can be explained with moderate amounts of greenhouse gases, such as 0.01 bar of CO2 (amounts which are consistent with geological constraints), or some NH3 or CH4.
No comments:
Post a Comment