Wednesday, November 15, 2023

The coming blackouts

Here is a link to

"Net-Zero Targets: Sustainable Future or CO2 Obsession Driven Dead-end?"

by Balázs M. Fekete

The Green Agenda is is not realizable. A move away from fossil fuels requires nuclear power.

Here are some excerpts.
------------------------------------------------
For over three decades, the reduction of CO2 emission was the primary motivation for promoting the transition from fossil fuels to alternative energy sources. Concerns about the inevitable exhaustion of fossil fuels were considered particularly during energy crises, but these concerns died out quickly as discoveries of new fossil fuel reserves such as the shale revolution in the US that appeared to secure energy supplies.

An under-appreciated paper by Murphy et al. (1) offers very strong arguments that the energy transition is a must that has to happen in a short time. Anyone looking at Figure 1 from this paper should be more concerned about running out of fossil fuels than climate change. It is almost certain that the spike on Figure 1 will only last for a few centuries irrespective of the exact location of the star, and the fossil fuel era will be only a fraction of the history of human civilizations. This period will not last long enough to deserve the proposed anthropocene[1] designation. The industrial era might rightfully be called a geological event that triggers post-anthropocene, but by no means will it last long enough to qualify as geological age or epoch.
----------
The primary challenge in relying on renewable energy sources is aligning consumption with the availability of intermittent energy fluxes. The distinction between stock vs. flux limited resources was first proposed with respect to water resources (2), but it is applicable to other resources including energy. Relying on flux limited resources consumed within the flux limits are clearly the pathways to sustainability defined as “a form of development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” (3), but stock limited resources serve both as a source and storage.

Fossil fuels formed over hundreds of million years offer the inherent flexibility of allowing consumption as needed, Flux limited resources necessitates the alignment of the consumption with their availability unless supplemental storage is available. Surprisingly few scientific papers have attempted to address this alignment that is so critical for relying on intermittent energy sources such as solar or wind that are envisioned as the primary energy sources in a sustainable future.
----------
A recently published paper by Fekete et al. (4) addresses the storage requirement for relying on solar or wind power only. This paper considered the seasonal and inter-annual variability of solar and wind by analyzing solar radiation and wind speed data averaged over the conterminous United States (Figure 3) vs. twelve selected states on the East Coast. A frequently repeated argument for neglecting the intermittency of renewables is that even if the Sun is not shining or the wind not blowing at a particular location and moment, the Sun is shining or the wind is blowing elsewhere so it is only a matter of establishing the necessary connectivity.

Firstly, if the Sun was always shining and the wind was always blowing somewhere, then spatially averaged solar radiation and wind speed (Figure 3) would balance out to a relatively constant value over time for large enough regions. The conterminous United States is clearly not large enough, because solar radiation and wind speed vary substantially both seasonally and inter-annually (Figure 3). Solar radiation in particular has strong seasonality that should surprise-nobody living at higher latitudes. Without going into details discussed in Fekete et al. (4), the seasonality of solar and wind in the selected states are not very different from the CONUS-wide average. Therefore, the expansion of the electric grid (“Upgrade our power infrastructure to deliver clean, reliable energy across the country and deploy cutting-edge energy technology to achieve a zero-emissions future”) — that is one of the key objectives listed in the Bipartisan Infrastructure Law[5] — will have little or no impact on addressing intermittency.

An “entertaining” element of the green agenda is the obvious contradictions in the advocated solutions. Green activists often view renewable energy as a means to reduce dependency on large-scale engineered infrastructures like the electric grid and suggest that renewables will allow communities to become more resilient and independent by disconnecting from the electric grid and live on “smart grids”. One has to ask, if autonomous “smart grids” were so “resilient”, then what is the purpose of the multi-billion dollar investment in long-distance grid connectivity?
----------
The storage capacity needed to align power generation from solar or wind is around 25% of the annual energy consumption, which is significantly higher than the few hourly or no energy storage factored in into typical life-cycle analysis comparing renewable and non-renewable energy sources (12, 13). In the absence of energy storage technology that can store several months worth of energy, one has to conclude that all studies suggesting that solar or wind are price competitive with other forms of energy should be retracted, since without storage neither could replace any other forms of energy that can deliver power on demand that the energy industry calls dispatchable.
----------
Intermittent energy sources such as solar and wind will not be able to replace the firm (dispatchable) power generation from fossil fuels without massive energy storage on the order of several months worth of energy consumption. In the absence of such energy storage technology, one has to conclude that renewables are not viable alternative to fossil fuels. Only nuclear energy is a viable “stock limited” resource where the stocks are much larger than the jack pot from fossil fuels.

No comments: